2025 Introduction to Plasma and Fusion Course

Laser-Driven Particle Acceleration & Advanced Light Sources University of California, Irvine

About Me

University of California, Irvine

UCI

Computers

Computers

https://en.wikipedia.org/wiki/Computer_(occupation)

Moore's Law

Moore's Law: The number of transistors on microchips doubles every two years. Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Transistor count

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip OurWorldinData.org – Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

https://en.wikipedia.org/wiki/Moore%27s_law

Gordon E. Moore, Cramming more components onto integrated circuits. (1965)

"However, the inexorable progress towards smaller chips may be nearing its limit. Physicists reckon that below 0.1 micron - a size which would be reached around 2005 - significant problems could arise from the unusual phenomena known as "quantum effects", in which individual electrons can tunnel through solid barriers."

C. Arthur, The Independent, 1996

"The technology has a habit of moving immovable barriers. Somehow, we always get past these problems."

C. Hoggar, Texas Instruments

1010). Current and Future Developments in Accelerator Facilities.

Dawn of the laser empire

CPA enables relativistic intensities

G. Mourou, et al., Mod. Phys. 78, 309 (2006)

Ultrafast Lasers

University of

Dalifornia, Irvine

1 TW focused to 10 um

> 3 teraVolts per meter

electron quiver velocity of 10⁸ ms⁻¹

1 mJ in 1 second = 1 milliwatt 1 mJ in 1 femtosecond = 1 terawatt

Short pulse lasers have pulse durations of >100 femtoseconds

1 femtosecond is one millionth of a billionth of a second (10⁻¹⁵ s)

California. Irvine

Space shuttle max speed = 17,500 mph

Travels 8 angstroms in 100 fs

Laser Power

- 1 Terawatt = a trillion Watts
- United States power capacity ~1 teraway

Laser Revolution

The Future Ultrafast Li	of Inten asers in t	se he U.S.		
R				
Brightest)		*	
Light Initiative WORKS	HOP RI	EPORT		
March 27-29 20	SPONSC	RED BY	ington, D.	C. NATIONAL PROTOKICS

Petawatt Powers

UCI University of California, Irvine

Light and plasma

• The index of refraction for light is given by

$$n(\omega) = \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

$$\omega_p = \sqrt{\frac{n_e e_c^2}{\epsilon_0 m_e}}$$

UCI University of California, Irvine

$$n_{crit} = \frac{\epsilon_0 m_e}{e_c^2} \omega^2$$

Underdense interactions

Laser Wakefield Acceleration

UCI University of California, Irvine

 $F_{Pond} = -\frac{e_c^2}{4m_e\omega_0^2}\nabla|E_0|^2$

V. Flores

Laser Wakefield Acceleration

Bubble size $\Delta v = \frac{L_d}{c} = \frac{\lambda_p}{2}$

Implications

- Short duration
- Wavebreaking
- Dephasing

University of

California, Irvine

UC

Laser Wakefield Progress

- First described by simulations!
 - 1979 Tajima & Dawson

UCI University of California, Irvine

- Predicted 100 GeV/meter
- Proof of principle experiments in 90s
- First "monoenergetic beams" in 2000s
- Current petawatt lasers can exceed 10 GeV

Laser Wakefield Acceleration

Electron Properties

- 1% Energy spread
- <15 fs bunch duration</p>
- <10 mrad divergence</p>
- >0.5 π mm mrad transverse emittance
- ~nanocoulomb charge

UC

[C. McGuffey, et al., Phys Plasm. 2012, C McGuffey, et al., Phys. Plasm. 2018]

Making X-rays

FIG. 6. Electric field lines for a charge moving at tangential speed $\beta = 0.95$ on a circular path centered on the \times .

R Tsien Am. J. Phys., (1972)

$\lambda = \frac{\lambda_u}{2\gamma^2}$

Wikipedia

Plasma Undulators

Betatron Spectrum

[S. Kneip, et al., Nat. Phys. 2010, S. Kneip, et al., App. Phys. Lett. 2011, C McGuffey, et al., Phys. Plasm. 2018]

X-ray Properties

UCI University of California, Irvine

- x-ray radiographs
- single shot on CCD

- x-rays resolve 3-5 µm objects
- x-ray source size ~ μm

[S. Kneip, et al., Nat. Phot. (2010)]

X-ray Phase Contrast Imaging

[S. Kneip, et al., App. Phys. Lett. 2011]

Other x-ray sources

F. Albert. Phys. Plasmas 30, 050902 (2023)

Overdense interactions

Short pulse lasers and overdense plasmas Ion acceleration Electron acceleration

High Harmonic Generation

Target Normal Sheath Acceleration

Target Normal Sheath Acceleration

K Zeil et al 2010 New J. Phys. 12 045015

Relativistically Induced Transparency

$$n_{crit} = \frac{\epsilon_0 \gamma m_e}{e_c^2} \omega^2$$

Laser Driven Neutron Sources

UCI University of California, Irvine

$$^{2}_{1}d +^{7}_{3}Li \rightarrow^{8}_{4}Be +^{1}_{0}n \qquad Q = 15.03MeV$$

$$^{2}_{1}d + ^{2}_{1}d \rightarrow ^{3}_{2}He + ^{1}_{0}n$$
 $Q = 3.27MeV$

Neutron Time-of-flight

University of California, Irvine

UCI

[C. Zulick, et al., App. Phys. Lett. 2013]

Neutrons on ice

University of

California, Irvine

UCI

[A. Maksimchuk, et al., App. Phys. Lett. 2013]

Plasma emission

ROM

- High order harmonic generation from aharmonic surface motion
- Low intensities via Coherent Wake Emission
- High intensities via Relativistic oscillating mirror

High Harmonic Generation

Laser solid electron sources

Experiments

UCI University of California, Irvine

<10 picoseconds

Pair Production

1. Direct (Trident) pair production

 $e^- + Z \rightarrow 2e^- + e^+ + Z$ (Z: nucleus)

2.Indirect (Bethe-Heitler) pair production:

$$e^{-} + Z \rightarrow \gamma + e^{-} + Z$$

 $\gamma + Z \rightarrow e^{-} + e^{+} + Z$
(γ : Bremsstrahlung)

UCI University of California, Irvine

Positron Measurements

Positron Measurments

UCI University of California, Irvine

[H. Chen, et al., HEDP 2011]

Conclusion

- High intensity lasers are powerful drivers of particle accelerators and advanced light sources
- In the underdense regime, multi-GeV electron accelerators have been demonstrated
- Bright x-ray sources with energies ranging from tens to thousands of eV have been demonstrated
- Tunable sources of electrons, ions, x-rays, neutrons, and positrons are capable

